a: Xét tứ giác AEMF có
\(\widehat{FAE}=\widehat{AEM}=\widehat{AFM}=90^0\)
Do đó: AEMF là hình chữ nhật
mà đường chéo AM là tia phân giác của \(\widehat{EAF}\)
nên AEMF là hình vuông
a: Xét tứ giác AEMF có
\(\widehat{FAE}=\widehat{AEM}=\widehat{AFM}=90^0\)
Do đó: AEMF là hình chữ nhật
mà đường chéo AM là tia phân giác của \(\widehat{EAF}\)
nên AEMF là hình vuông
Câu 4: Cho hình vuông ABCD, M thuộc đường chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng:
a. BM vuông góc EF
b. Các đường thẳng BM, EF, CE đồng quy.
Cho hình vuông ABCD . Trên cạnh BC lấy điểm E , trên tia đối của tia DC lấy điểm F sao cho BE = DF .
a) Chứng minh ΔAEH vuông cân tại A
b) Gọi H là điểm đối xứng của A qua EF . Chứng minh AEHF là hình vuông.
Cho hình thang vuông ABCD có góc A= góc D=90 có AB=3,AD=8,CD=5. M,N theo thứ tự là trung điểm BC,AD. Gọi K là hình chiếu của M trên CD . Chứng minh MNDK là hình vuông
Cho hình vuông ABCD. Gọi E,F theo thứ tự là trung điểm AB,CD.
a) Tứ giác AECF là hình gì? Vì sao?
b) Gọi H là hình chiếu của D trên CE. Chứng minh AF là đường trung trực của DH và tứ giác AEHF là hình thang cân.
c) DH cắt BC tại K. Chứng minh K là trung điểmBC.
d) FH cắt BC tại G. Tính góc FAG.
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE
Cho hình vuông ABCD. Gọi E là trung điểm CD, F nằm trên cạnh BC sao cho BF=3FC. Chứng minh EF=1/2 AE. (gợi ý: Gọi I là trung điểm của BC, c/m EF =1/2 DI và DI = AE)
Cho ΔABC có trung tuyến AM. Qua M kẻ đường thẳng
song song với AC cắt AB ở E. Qua M kẻ đường thẳng song
song với AB cắt AC ở F. I là điểm đối xứng với M qua E
a, Tứ giác AEMF là hình gì?
b, Tứ giác AIBM là hình gì?
Cần điều kiện gì để AIBM là hình vuông?
c, Vị trí của M để EF ngắn nhất
chỉ cần làm câu b, c thôi ạ