Bài 12: Hình vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tien Tien

Cho ΔABC có trung tuyến AM. Qua M kẻ đường thẳng

song song với AC cắt AB ở E. Qua M kẻ đường thẳng song

song với AB cắt AC ở F. I là điểm đối xứng với M qua E

a, Tứ giác AEMF là hình gì?

b, Tứ giác AIBM là hình gì?

Cần điều kiện gì để AIBM là hình vuông?

c, Vị trí của M để EF ngắn nhất
chỉ cần làm câu b, c thôi ạ

Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 7:35

a: Xét tứ giác AEMF có

AE//MF

ME//AF

Do đó: AEMF là hình bình hành

Thanh Hoàng Thanh
11 tháng 12 2021 lúc 9:07

b) Xét tam giác ABC có:

+ M là trung điểm BC (do AM là trung tuyến).

+ ME // AC (gt).

=> E là trung điểm AB (Định lý đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba).

Ta có: I là điểm đối xứng với M qua E (gt) => E là trung điểm MI.

Xét tứ giác AIBM có:

+ E là trung điểm MI (gt).

+ E là trung điểm AB (gt).

=> Tứ giác AIBM là hình bình hành (dhnb).

Theo giả thiết: Tứ giác AIBM là hình vuông.

=> AM = BM và AM vuông góc BM (Tính chất hình vuông).

Xét tam giác ABC có:

AM là đường trung tuyến (gt).

AM là đường cao (AM vuông góc BC; M thuộc BC).

=> Tam giác ABC cân tại A.

Xét tam giác ABC cân tại A có:

\(BM=\dfrac{1}{2}BC\) (M là trung điểm của BC).

Mà BM = AM (cmt).

=> \(AM=\dfrac{1}{2}BC\).

=> Tam giác ABC vuông cân tại A.

Vậy tam giác ABC vuông cân tại A thì tứ giác AIBM là hình vuông.

 

 

 


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
anh hoang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Phước Lộc
Xem chi tiết
thanh tâm
Xem chi tiết
Xích U Lan
Xem chi tiết
cao phương tú tài :3
Xem chi tiết
Như quynk Lê thị
Xem chi tiết
Trần Lê Gia Bảo
Xem chi tiết