Cho hình vuông ABCD, lấy E thuộc đường chéo AC. Kẻ EF vuông góc với AD, EG vuông góc với CD.
a) CMR: EB=FG, EB vuông góc với FG
b) DE,AG,CF đồng quy
ĐANG CẦN GẤP!!!
Câu 4: Cho hình vuông ABCD, M thuộc đường chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng:
a. BM vuông góc EF
b. Các đường thẳng BM, EF, CE đồng quy.
Cho hình vuông ABCD, điểm E thuộc CD. Tia phân giác của góc ABE cắt ở AD ở K.
Chứng minh rằng AK + CE = BE ?
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE
Cho hình vuông ABCD. Gọi điểm E là điểm đối xứng của A qua D
a) Chứng minh ∆ACE vuông cân
b) Từ A hạ AH vuông góc với BE. Chứng minh HD =AD
c) Gọi M, N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác
MNCB là hình bình hành
Cho hình vuông ABCD. M là điểm trên đường chéo AC. E,F lần lượt là hình chiếu của M trên AB,AD. Chứng minh rằng a) AEMF là hình vuông b) EF//BD
Cho tam giác ABC vuông tại A. Tia phân giác của góc BAC cắt cạnh BC tại D. Vẽ DE vuông góc với AB ( E thuộc AB ) và DF vuông góc với AC (F thuộc AC ). Chứng minh tứ giác AEDF là hình vuông
Cho hình vuông ABCD. Gọi M là điểm nằm giữa D và C. Tia phân giác của góc DAM cắt CD tại N. Kẻ NH vuông góc AM, H thuộc AM , NH cắt BC tại I.
a) Chứng minh rằng: ABI AHI .
b) Tính số đo góc NAI.
Cho hình vuông ABCD . Điểm E nằm trên đường thẳng AD. Chứng minh góc BEC không đổi