Cho hình vuông ABCD, trên hai cạnh BC, CD lần lượt lấy hai điểm E và F sao cho \(\widehat{EAF}=\widehat{EAB}+\widehat{FAD}\) (E khác B, F khác D). Trên tia đối của tia BC lấy điểm Q thỏa mãn: BQ = DF
1. CMR : tam giác AQF vuông cân ở A
2. CM: \(\Delta QAE\sim\Delta QCAvàQA^2=QE.QC\)
3.Gọi P là giao điểm của QF và AB. Chứng minh:QE\(\ge2\sqrt{AB.BP}\)
Cho hình vuông ABCD cạnh a, E thuộc cạnh BC, F thuộc cạnh AD sao cho: CE=AF. Các đường AE, BF cắt CD theo thứ tự tại M và N.
a) CM: \(CM.DN=a^2\)
b) Gọi MB giao với NA tại K. CM: \(\widehat{MKN}=90\) độ
c) Các điểm E, F có vị trí như thế nào thì MN có độ dài nhỏ nhất
hình chữ nhật ABCD có AB = 4 ,BC=6.trên BD lấy E và F sao cho BE =EF =FD .Khi đó S của CEF
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho tứ giác ABCD có M, N lần lượt là trung điểm của BC,CD.E và F là giao điểm của BD với AM,AN.Chứng minh nếu BE=EF=FD thì ABCD là hình bình hành.
Giúp mình vs nhé...
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Câu 1: Khi phân tích 2016 ra thừa số nguyên tố thì tổng các số nguyên tố là....
Câu 2: Cho hình vuông ABCD. Lấy các điểm E,F,G,H lần lượt trên cạnh AD, AB, DC và BC sao cho AE=AF=DH=5cm; BF=BG=12 cm. Diện tích EFGH=?
thanks mn nha!!))
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}=90\) độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất