Chương III - Góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Limited Edition

Cho hình vuông ABCD có 2 đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho \(\widehat{IEM}=90^o\) ( I và M không trùng với các đỉnh của hình vuông).

a) C/m 4 điểm B,I,E,M cùng thuộc 1 đường tròn.

b) Tính \(\widehat{IME}\)c) Gọi N là giao điểm của tia AM và tia DC. K là giao điểm của tia BN và tia EM. C/m \(CK\perp BN\)

Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 12:42

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)

 


Các câu hỏi tương tự
nguyễn tuấn hưng
Xem chi tiết
007
Xem chi tiết
hà anh
Xem chi tiết
2008
Xem chi tiết
Xích U Lan
Xem chi tiết
Trung Hieu
Xem chi tiết
nguyễn bảo anh
Xem chi tiết
vananh
Xem chi tiết
Xích U Lan
Xem chi tiết