Qua E kẻ Ez // AB
=> \(\widehat{BAE}=\widehat{AEz}=40^0\) ( so le trong)
Ta có: \(\widehat{AEC}=\widehat{AEz}+\widehat{zAC}\)
\(\Rightarrow\widehat{zEC}=\widehat{AEC}-\widehat{AEz}=60^0-40^0=20^0\)
Lại có : AB // CD
AB // Ez
=> CD // Ez
\(\Rightarrow\widehat{zEC}=\widehat{ECD}=20^0\) ( so le trong)
Vậy ...
Qua \(E\) ta kẻ \(EF\) sao cho \(EF\) // \(AB.\)
=> \(\widehat{BAE}=\widehat{AEF}\) (vì 2 góc so le trong)
Mà \(\widehat{BAE}=40^0\left(gt\right)\)
=> \(\widehat{AEF}=40^0.\)
Ta có: \(\widehat{AEF}+\widehat{FEC}=\widehat{AEC}\)
=> \(40^0+\widehat{FEC}=60^0\)
=> \(\widehat{FEC}=60^0-40^0\)
=> \(\widehat{FEC}=20^0.\)
Vì \(AB\) // \(CD\left(gt\right)\)
\(AB\) // \(EF\) (do cách vẽ)
=> \(EF\) // \(CD.\)
=> \(\widehat{FEC}=\widehat{ECD}\) (vì 2 góc so le trong)
Mà \(\widehat{FEC}=20^0\left(cmt\right)\)
=> \(\widehat{ECD}=20^0\)
Vậy \(\widehat{ECD}=20^0.\)
Chúc bạn học tốt!