Cho hình thang ABCD có AC cắt BD tại O.Qua O,kẻ đường thẳng song song với AB cắt BC tại I và AD tại J
a,chứng minh :BC.OI=AB.CI
b,chứng minh :\(\frac{OI}{CD}=\frac{BI}{BC}\)
c,chứng minh :OI=OJ
d,chứng minh:\(\frac{1}{OI}=\frac{1}{AB}+\frac{1}{CD}\)
Cho hình thang ABCD (AB//CD và góc DAB=góc DBC)biết AB=2,5 cm ; AD=3,5 cm ; BD=5cm
a) Chứng minh ; tam giác ABD đồng dạng với tam giác BDC.
b) Tính độ dài các cạnh BC và CD.
c) Chứng minh :\(\frac{SABC}{SBDC}=\frac{1}{4}\)
cho hình thang vuông ABCD có A=B=90 độ và AD=2BC Kẻ AH vuông góc với BD(H thuộc BD) Gọi I là trung điểm của HD. Chứng minh CI vuông AI
Cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH, AK
a, chứng minh ΔBDC đồng dạng với ΔHBC
b, chứng minh BC2 = HC.DC
c, chứng minh ΔAKD đồng dạng với ΔBHC
d, cho BC=15cm, DC=25cm. tính HC, HD
e, tính diện tích hình thang ABCD
Cho ΔABC, các đường cao BD, CE cắt nhau tại H. đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. gọi M là trung điểm của BC
a, chứng minh ΔADB đồng dạng với ΔAEC
b, chứng minh HE.HC=HD.HB
c, chứng minh H,K, M thẳng hàng
d, ΔABC phải có điều kiện gì thì tứ giác BHCK là hình thoi? hình chữ nhật?
Cho HCN ABCD đường chéo AC và BD cắt nhau tại O.Lấy P là 1 điểm tùy ý trên OB.Gọi M là điểm đối xứng với C qua P. Từ M kẻ ME vuông góc với đường thẳng AB (F thuộc AB)
a) Chứng minh rằng AEFM là HCN
b) Chứng minh rằng AMBD là hình thang
c) Chứng minh E,F,P thẳng hàng
d) Xác định vị trí của P để AMBD là hình thang cân
Cho xx' // yy' và một đường cắt xx' tại A, cắt yy' tại B. Tia phân giác góc x'AB cắt tia phân giác góc ABy' tại C và tia phân giác góc BAx cắt tia phân giác góc ABy tại D
a) Chứng minh CA _|_ DA ; CB _|_ DB
b) Chứng minh AC // BD ; AD // BC
c) Tính góc ACB + góc ADB
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.
Cho hình bình hành ABCD, kẻ AE và CF vuông góc với BD.
a) Tứ giác AECF là hình gì? Vì sao?
b) AE cắt CD tại I, CF cắt AB tại K. Chứng minh trung điểm O của IK thuộc đường chéo BD.
c) Vẽ BM và DN vuông góc AC. Chứng minh EMFN là hình bình hành.
d) Các phân giác AG và BH của tam giác AOB cắt nhau tại P. Các phân giác DY, Cl của tam giác DOC cắt nhau tại Q. Chứng minh O là trung điểm PQ.