a) xét tam giác OAB và tam giác OCD có:
\(\widehat{AOB}=\widehat{COD}\)(đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)
do đó tam giác OAB ~ tam giác OCD(g-g)
b) vì tam giác OAB ~ tam giác OCD nên:
\(\dfrac{AO}{OC}=\dfrac{BO}{OD}\)
\(\Leftrightarrow\dfrac{AO}{OC}+1=\dfrac{BO}{OD}+1\Leftrightarrow\dfrac{BD}{OD}=\dfrac{AC}{OC}\)
hay \(\dfrac{OD}{BD}=\dfrac{OC}{AC}\)
c)
Áp dụng ĐL pytago vào tam giác vuông ABD, ta được:
\(BD^2-AB^2=AD^2\) (1)
Áp dụng ĐL pytago vào tam giác vuông ACD, ta được:
\(AC^2-CD^2=AD^2\) (2)
từ (1) và (2) suy ra \(BD^2-AB^2=AC^2-CD^2\\ \Leftrightarrow AC^2-BD^2=DC^2-AB^2\)