cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML