Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Chi

Cho hình thang ABCD có \(\widehat{A}\) = \(\widehat{B}\) = 900, AB = BC = \(\dfrac{AD}{2}\) , pt CD: 3x + y - 4 = 0 A(-2; 0). Tìm toạ độ B (yB > 0)

missing you =
31 tháng 5 2022 lúc 11:33

\(AB=BC=\dfrac{AD}{2}=a\Rightarrow AD=2a\)

\(C\in CD:3x+4y-4=0\Rightarrow C\left(b;4-3b\right)\)

\(xét\Delta ABC\) \(vuông\) \(tạiB\Rightarrow AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Delta ABC\) \(vuông\) \(cân\) \(tạiB\Rightarrow\) \(goscBAC=45^o\)

\(\Rightarrow góc\) \(DAC=45^o\) 

\(xét\Delta ADC\) \(có:DC=\sqrt{AC^2+AD^2-2AC.AD.cos\left(45^o\right)}\)

\(=\sqrt{2a^2+4a^2-2.a^2\sqrt{2}.2.cos\left(45\right)}=a\sqrt{2}\)

\(\Rightarrow DC=AC\Rightarrow\Delta ADC\) \(cân\) \(tạiC\Rightarrow góc\left(DAC\right)=góc\left(ADC\right)=45^o\Rightarrow góc\left(ACD\right)=90^o\)

\(\overrightarrow{CA}=\left(-2-b;3b-4\right)\Rightarrow\overrightarrow{n_{ca}=}\left(4-3b;-2-b\right)\)

\(CD:3x+y-4=0\Rightarrow\overrightarrow{n}=\left(3;1\right)\)

\(\Rightarrow cos\left(90\right)=0=3\left(4-3b\right)-2-b=0\Leftrightarrow b=1\)

\(\Rightarrow C\left(1;1\right)\)

\(đặt:B\left(x;y\right)\left(y>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=\overrightarrow{0}\\AB=BC\end{matrix}\right.\) \(hệ\) \(pt\) \(ẩn\) \(x;y\Rightarrow B=\left(......\right)\)

 


Các câu hỏi tương tự
Vĩ Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngoc Diep
Xem chi tiết
Ryoji
Xem chi tiết
ru con ru con
Xem chi tiết
Ken_Kaneki_65_56
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết