\(AB=BC=\dfrac{AD}{2}=a\Rightarrow AD=2a\)
\(C\in CD:3x+4y-4=0\Rightarrow C\left(b;4-3b\right)\)
\(xét\Delta ABC\) \(vuông\) \(tạiB\Rightarrow AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(\Delta ABC\) \(vuông\) \(cân\) \(tạiB\Rightarrow\) \(goscBAC=45^o\)
\(\Rightarrow góc\) \(DAC=45^o\)
\(xét\Delta ADC\) \(có:DC=\sqrt{AC^2+AD^2-2AC.AD.cos\left(45^o\right)}\)
\(=\sqrt{2a^2+4a^2-2.a^2\sqrt{2}.2.cos\left(45\right)}=a\sqrt{2}\)
\(\Rightarrow DC=AC\Rightarrow\Delta ADC\) \(cân\) \(tạiC\Rightarrow góc\left(DAC\right)=góc\left(ADC\right)=45^o\Rightarrow góc\left(ACD\right)=90^o\)
\(\overrightarrow{CA}=\left(-2-b;3b-4\right)\Rightarrow\overrightarrow{n_{ca}=}\left(4-3b;-2-b\right)\)
\(CD:3x+y-4=0\Rightarrow\overrightarrow{n}=\left(3;1\right)\)
\(\Rightarrow cos\left(90\right)=0=3\left(4-3b\right)-2-b=0\Leftrightarrow b=1\)
\(\Rightarrow C\left(1;1\right)\)
\(đặt:B\left(x;y\right)\left(y>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=\overrightarrow{0}\\AB=BC\end{matrix}\right.\) \(hệ\) \(pt\) \(ẩn\) \(x;y\Rightarrow B=\left(......\right)\)