Lời giải:
Kẻ đường cao $AM$ và $BN$ của hình thang
Dễ cm $ABNM$ là hình chữ nhật nên $MN=AB=4$ (cm)
$DM+CN=DC-MN=8-4=4$ (cm)
Áp dụng định lý Pitago:
$DM^2=DA^2-AM^2=9-h^2$
$CN^2=BC^2-BN^2=25-h^2$
$\Rightarrow CN^2-DM^2=25-9=16$
$\Leftrightarrow (CN-DM)(CN+DM)=16$
$\Leftrightarrow 4(CN-DM)=16$
$\Leftrightarrow CN-DM=4$
Vậy $CN-DM=CN+DM\Rightarrow DM=0$ hay $D\equiv M$
$\Rightarrow AD\perp CD$ nên $ABCD$ là hình thang vuông tại $D$ và $A$