Cho hình thang ABCD ( AB//CD) với AB=a ; CD=b . Gọi I là giao điểm của hai đường chéo . Đường thẳng qua I và song song với AB cắt hai cạnh bên tại E và F. Chứng minh rằng : EF= 2ab/a-b
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.
cho hình thnag abcd (ab//cd), hai đường chéo ac và bd cắt nhau taiij o . một đường thẳng d qua o // với 2 đáy cắt ad tại e, bc tại f . chứng minh 1/ab +1/cd =2/ef
1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA.
2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM
3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và trung điểm của BC cắt AB tại M và đường thẳng qua P và trung điểm của AD cắt CD tại N . CMR MN//AD
4. Tứ giác ABCD có M, N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm Tam giác ABC, nối GC cắt MN tại O. Chứng minh OC=3OG
5. Cho hình thang ABCD ) AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đương chéo. Đường thẳng qua I và song song AB cắt hai cạnh bên tại E và F. CMR: EF=\(\frac{2ab}{a-b}\)
6. Hình bình hành ABCD. Gọi M là một điểm trên đường chéo AC. VẼ ME vuông góc với AB và MF vuông góc với AD. CMR\(\frac{ME}{MF}\)=\(\frac{AD}{AB}\)
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
Bài 1: Cho hình thang ABCD (AB // CD) có AB = 7,5cm, CD = 12cm. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a. Chứng minh EF // AB
b. Tính độ dài đoạn EF.
Bài 2: Cho hình bình hành ABCD. Từ một điểm M trên đường chéo AC( M không là trung điểm của AC) ta vẽ các đường thẳng song song với các cạnh của hình bình hành, chúng lần lượt cắt AB, BC, CD, DA tại E, F, G, H. Chứng minh
a. HE // GF
b. Ba đường thẳng EF, GH, AC đồng quy.
Cho hình thang ABCD (AB// CD) AB< CD, AC giao BD = { O }. Đường thẳng qua A // BC cắt BD ở E, cắt CD tại M. Đường thẳng qua B // AD cắt AC tại F cắt CD tại N. Chứng minh:
a. EF // AB
b. AB2 = EF.CD
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ