Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB cắt AD và BC ở E và F. Chứng minh: \(\dfrac{ED}{AD}+\dfrac{BF}{BC}=1\) .
Cho hình thang ABCD, O là giao điểm của 2 đường chéo, đáy lớn CD. Đường thẳng qua A song song với BC cắt BD ở E và đường thẳng qua B song song với AD cắt đường thẳng AC tại F.
a) CHứng minh: EF song song với AB.
b) Chứng minh: AB^2=EF.CD
c) Gọi S1, S2, S3, S4 theo thứ tự là diện tích các tam giác CAB, OCD, OAD, OBC. Chứng minh: S1.S2=S3.S4
Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường
thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và
N.
a, Chứng minh rằng OM = ON.
b, Chứng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
c, Biết SAOB= 20082(đơn vị diện tích); SCOD= 20092(đơn vị diện tích). Tính SABCD
Cho hình thang ABCD ( AB // CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD, BCtheo thứ tự ở E, F. Tính FC, KF biết AE = 4cm, ED = 2cm, BF = 6cm AB = 5cm. (K là giao điểmcủa AC và EF)
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?