Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB cắt AD và BC ở E và F. Chứng minh: \(\dfrac{ED}{AD}+\dfrac{BF}{BC}=1\) .
Cho hình thang ABCD, O là giao điểm của 2 đường chéo, đáy lớn CD. Đường thẳng qua A song song với BC cắt BD ở E và đường thẳng qua B song song với AD cắt đường thẳng AC tại F.
a) CHứng minh: EF song song với AB.
b) Chứng minh: AB^2=EF.CD
c) Gọi S1, S2, S3, S4 theo thứ tự là diện tích các tam giác CAB, OCD, OAD, OBC. Chứng minh: S1.S2=S3.S4
Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường
thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và
N.
a, Chứng minh rằng OM = ON.
b, Chứng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
c, Biết SAOB= 20082(đơn vị diện tích); SCOD= 20092(đơn vị diện tích). Tính SABCD
Cho hình thang ABCD ( AB // CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD, BCtheo thứ tự ở E, F. Tính FC, KF biết AE = 4cm, ED = 2cm, BF = 6cm AB = 5cm. (K là giao điểmcủa AC và EF)
Cho hình thang ABCD ( AB // CD ) . Các đường chéo cắt nhau ở O . Đường thẳng a qua O // với đáy của hình thang và cắt các cạnh bên AD , BC theo thứ tự E và F . Chứng minh rằng :
a) \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{EF}\)
b) Đường thẳng b // với đây cắt 2 cạnh bên và cắt 2 đường chéo của hình thang lần lượt là M ; N ; H ; K . Chứng minh : MH = MK
AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy