Theo hệ quả định lí Ta-lét, AB//CD (Hình thang ABCD) nên:
\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow OA.OD=OB.OC\) (đpcm)
Chúc bạn học tốt@@
Theo hệ quả định lí Ta-lét, AB//CD (Hình thang ABCD) nên:
\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow OA.OD=OB.OC\) (đpcm)
Chúc bạn học tốt@@
Cho hình thang cân ABCD ( AB // CD, AB < CD ), O là giao điểm của hai đường chéo, I là giao điểm của AD và BC.
a, C/minh: OA = OB, OC = OD.
b, Gọi M, N lần lượt là trung điểm các cạnh AB; CD. CMR: I, M, O, N thẳng hàng.
Cho hình thang cân ABCD có AB//CD; AB<CD kẻ đường cao AH và BK a) Cho biết AB=a; CD=b Tính DH và DK theo a và b b) Gọi O là giao điểm là 2 đường chéo chứng minh rằng OA=OB; OC=OD c)Gọi E là giao điểm của 2 cạnh bên chứng minh rằng OE là trung trực của 2 đáy d) chứng minh rằng AC^2 -BC^2 = AB.CD
cho hinh thang ABCD ( AB // CD ) có M là giao của AD và BC, N là giao điểm của 2 đường chéo. Gọi I và K lần lượt là giao điểm của MN với AB và CD. CMR: I là trung điểm của AB, K là trung điểm của CD
Cho hình thang ABCD (AB//CD) có I là giao điểm của 2 đường chéo. Chứng minh IC=ID và IA=IB
Cho hình thang ABCD ( AB//CD). Gọi O là giao điểm của 2 đướng chéo AC, BD
a. cm: OA.OD=OB. OC ( Mình đã CM dc rồi ạ )
b. Cho AB=5cm, CD=10cm,AC=9cm. Tính OC,OA ( Mọi người giúp mình câu này với ạ)
Cho hình thang cân ABCD, O là giao điểm của AC và BD, I là giao điểm của AD và BC.
a) Chứng minh rằng: OA =OB; OC=OD (mình giải đc rồi)
b) Gọi M, N lần lượt là trung điểm của các cạnh AB, DC. Chứng minh rằng: I, M, O, N thẳng hàng
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.