Cho hình nón đỉnh S, đường tròn đáy tâm O bán kính r=3, đường cao SO=3. Mặt phẳng (P) di động luôn vuông góc với SO tại điểm H (nằm giữa S và O) cắt mặt nón theo giao tuyến là đường tròn (C). Mặt cầu (T) chứa (C) và tiếp xúc với đáy hình nón tại O. Thể tích khối cầu (T) đạt min =?
Cho đường tròn tâm O bán kính r'. Xét hình chóp S.ABCF có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD luôn luôn vuông góc với nhau
a) Tính bán kính r của mặt cầu đi qua 5 đỉnh của hình chóp
b) Hỏi đáy ABCD là hình gì để thể tích hình chóp đạt giá trị lớn nhất
Trong mặt phẳng \(\left(\alpha\right)\), cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng \(\left(\alpha\right)\) đó cho nửa đường tròn đường kính AB cẳ BC tại M
a) Chứng minh rằng khi quay mặt phẳng \(\left(\alpha\right)\) xung quanh AB có một mặt nón tròn xoay và một mặt cầu được tạo thành. Hãy xác định các mặt tròn xoay đó ?
b) Chứng minh rằng giao tuyến của hai mặt tròn xoay đó là một đường tròn. Hãy xác định bán kính của đường tròn đó ?
c) So sánh diện tích toàn phần của hình nón và diện tích của mặt cầu nói trên
Cho hình lập phương ABCD.A'B'C'D' cạnh a
a) Tính diện tích xung quanh của hình trụ có đường tròn hai đáy ngoại tiếp các hình vuông ABCD và A'B'C'D'
b) Tính diện tích mặt cầu đi qua tất cả các đỉnh của hình lập phương
c) Tính diện tích xung quanh của hình nón tròn xoay nhận đường thẳng AC' làm trục và sinh ra bởi cạnh AB
Cho tứ diện ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD)
a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH
b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH
Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO'
a) Chứng minh rằng mặt cầu đường kính OO' tiếp xúc với hai mặt đáy của hình trụ và tiếp xúc với tất cả các đường sinh của mặt trụ
b) Cắt hình trụ bởi một mặt phẳng song song với trục OO' và cách trục một khoảng bằng \(\dfrac{r}{2}\). Tính diện tích thiết diện thu được
c) Thiết diện nói trên cắt mặt cầu đường kính OO' theo thiết diện là một đường tròn. Tính bán kính của đường tròn đó
Cho hình nón (H) có chiều cao bằng h, đường sinh tạo với mặt phẳng đáy một góc bằng \(60^0\)
a) Tính thể tích khối nón (H)
b) Tính thể tích khối cầu nội tiếp hình nón (H)
Cho tam giác vuông cân ABC có cạnh AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác K, ta được tứ diện SABC
a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC
b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC ) một góc bằng \(30^0\)
Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy
A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\)
Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng
A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) C. \(64\Pi\) D. \(32\Pi\)
Câu 3 : Cắt một hình trụ theo một mặt phẳng song song với trục và cách trục của hình trụ một khoảng bằng 2a , ta được thiết diện là một hình vuông cạnh a . Tính thể tích khối trụ đã cho .
A. \(2\Pi a^3\) B. \(\Pi a^3\) C. \(\Pi a^3\sqrt{3}\) D. \(4\Pi a^3\)
Câu 4 : Một hình nón đỉnh S , đáy là đường tròn tâm O và góc ở đỉnh bằng 1200 . Một mặt phẳng đi qua đỉnh S và cắt hình nón theo một thiết diện là tam giác vuông cân SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3 . Tính diện tích xung quanh của hình nón
A. \(36\Pi\sqrt{3}\) B. \(27\sqrt{3}\Pi\) C. \(18\sqrt{3}\Pi\) D. \(9\sqrt{3}\Pi\)
Câu 5 : Hình nón đỉnh I và đường tròn tâm O . Bán kính đáy bằng chiều cao của hình nón và bằng a . Hai điểm A , B nằm trên đường tròn đáy sao cho \(AB=\frac{a}{2}\) . Tính thể tích tứ diện IABO
A. \(\frac{a^3\sqrt{5}}{4}\) B. \(\frac{a^3\sqrt{5}}{48}\) C. \(\frac{a^3\sqrt{15}}{16}\) D. \(\frac{a^3\sqrt{15}}{12}\)