Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với \(AI=x,\left(0< x< a\right)\). Lấy \(\left(\alpha\right)\) là mặt phẳng đi qua I và song song với mặt phẳng (SBD)
a) Xác định thiết diện của mặt phẳng \(\left(\alpha\right)\) với hình chóp S.ABCD
b) Tìm diện tích S của thiết diện ở câu a) theo \(a,b,x\). Tìm \(x\) để S lớn nhất ?
Cho hình hộp ABCD.A'B'C'D'
a) Chứng minh rằng hai mặt phẳng (BDA') và (B'D'C) song song với nhau
b) Chứng minh rằng đường chéo AC' đi qua trọng tâm \(G_1;G_2\) của hai tam giác BDA' và B'D'C
c) Chứng minh \(G_1;G_2\) chia đoạn AC' thành ba phần bằng nhau
d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và AA'C'C. Xác định thiết diện của mặt phẳng (A'IO) với hình hộp đã cho
cho hình chóp s.abcd có tất cả các cạnh bằng nhau và bằng đáy là hình vuông abcd gọi g là trọng tâm của tam giác sab. Tìm thiết diện tạo bởi mặt phẳng đi qua G và song song với CD và là hình gì ?
Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang , AD song song BC . Các điểm M,N lần lươt là trung điểm của các cạnh AB,CD, G là trọng tâm tam giác SAD
a, chứng minh rằng đường thẳng BC song song với mặt phẳng (SMN)
b, Xác định thiết diện của hình chóp cắt bởi mặt phẳng (GMN). thiết diện là hình gì ?
giúp e nha mn maii e nôpp gấp ruiiii !!
Trong mặt phẳng \(\left(\alpha\right)\) cho hình bình hành ABCD. Qua A, B, C , D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên \(\left(\alpha\right)\). Trên a, b, c lần lượt lấy 3 điểm A', B', C' tùy ý
a) Hãy xác định giao điểm D' của đường thẳng d với mặt phẳng (A'B'C')
b) Chứng minh A'B'C'D' là hình bình hành
Cho tứ diện đều ABCD có cạnh a. M,N trên AD và BC sao cho AM = CN = x(0<x<a); (a) qua MN và song song CD.
a,Tìm thiết diện của tứ diện với (a).
Thiết diện là một hình vuông được không?
b, tính diện tích thiết diện theo a, x. Tìm x để diện tích thiết diện đạt Min
Cho hình lập phương ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, B'C', DD'. Hãy xác định thiết diện tạo bởi hình lập phương đã cho và mặt phẳng (MNP).
Cho chình chóp S ABCD . , đáy ABCD là hình bình hành. Gọi M N, lần lượt là trọng tâm các tam giác SAB SAD , ; P là điểm thuộc cạnh AD sao cho AP=2PD.
1) Chứng minh MP song song với mặt phẳng (SBD)
2) Gọi (α) là mặt phẳng qua N song song với (SCD). Xác định thiết diện của (α)và hình chóp. Thiết diện là hình gì?
3) Gọi (β) là mặt phẳng chứa MP và song song với SA .Dựng thiết diện giữa (β) và hình chóp S ABCD . .
4) Gọi E là trung điểm cạnh CD . Xác định thiết diện của (EMN) và hình chóp S ABCD . . Gọi K là giao điểm của (EMN) và đường thẳng SA . Tính KS/KA .