a:Xet ΔHMN có HE/HM=HI/HN
nên EI//MN và EI=1/2MN=5cm
b: Xét tứ giác EIPF có
EI//PF
EI=PF
=>EIPF là hình bình hành
c: Xét ΔNPE có
EI,NH là đương cao
EI cắt NH tạiI
=>I là trực tâm
=>PI vuông góc EN
=>EN vuông góc EF
a:Xet ΔHMN có HE/HM=HI/HN
nên EI//MN và EI=1/2MN=5cm
b: Xét tứ giác EIPF có
EI//PF
EI=PF
=>EIPF là hình bình hành
c: Xét ΔNPE có
EI,NH là đương cao
EI cắt NH tạiI
=>I là trực tâm
=>PI vuông góc EN
=>EN vuông góc EF
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
Cho tâm giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là các chân đường vuông góc kẻ từ H đến AB, BC . Gọi Ở là giao điểm của AH và MN, K là trung điểm của CH
a) chứng minh tứ giác ÂM HN là bình chữ nhật
b) tính góc MNK
c) chứng minh BO vuông góc với AK
cho tam giác abc vuông tại b. m,n là trung điểm ba,bc. k là tia đối của mn sao cho mn=mk nối k với b, a với n . a) chứng minh tứ giác akbn,aknc là hình bình hành b) gọi h là hình chiếu của k xuống bc. chứng minh tứ giác akhb là hình chữ nhật c) gọi giao điểm của ah và bk là o ; giao điểm của kc và an là i . chứng minh tứ giác hoin là hình thang cân
giúp mình với mình cần gấp
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
5:Cho ∆ ABC vuông tại A có M là trung điểm BC.
a) Biết BC = 12 cm. Tính AM?
b) Từ M, vẽ MN vuông góc AB ( N thuộc AB), MQ vuông góc AC ( Q thuộc AC). Chứng minh: Tứ giác
ANMQ là hình chữ nhật.
c) Chứng minh: NMCQ là hình bình hành.
d) Gọi H là điểm đối xứng của M qua N, K là điểm đối xứng của M qua Q.
Chứng minh: A là trung điểm của HK
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
Cho tam giác ABC vuông tại A. Gọi E là trung điểm của BC. Kẻ EM, EN lần lượt vuông góc với AB, AC ( M thuộc AB, N thuộc AC ) a) Chứng minh tứ giác AMEN là hình chữ nhật b) Biết BC=10cm, AC=6m. Tính diện tích hình chữ nhật AMEN
Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a) Chứng minh ADME là hình chữ nhật
b) Chứng minh DBME là hình bình hành
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân