a) ta có MB//PC và \(MP=PC=\dfrac{AB}{2}\) nên tứ giác MBCP là hình bình hành.
đồng thời có góc PCB bằng 90 độ, nên tứ giác MBCP là hình chữ nhật.
b) gọi I là trung điểm BH.
ta có \(\left\{{}\begin{matrix}BI=HI\\AN=NH\end{matrix}\right.\)nên NI là đường trung bình của tam giác AHB \(\Rightarrow\left\{{}\begin{matrix}NI\text{//}AB\\NI=\dfrac{AB}{2}\end{matrix}\right.\)
ta có: \(\left\{{}\begin{matrix}NI\text{//}AB\\AB\perp BC\end{matrix}\right.\)\(\Rightarrow NI\perp BC\)
tam giác NBC có \(HB\perp NC\) và \(NI\perp BC\) nên I là trực tâm
\(\Rightarrow CI\perp NB\) (1)
ta có: \(\left\{{}\begin{matrix}AB=DC\\PC=\dfrac{DC}{2}\end{matrix}\right.\)\(\Rightarrow PC=\dfrac{AB}{2}\)
đồng thời \(NI=\dfrac{AB}{2}\)(cmt) nên \(PC=NI\)
tứ giác NICP có \(PC=NI\)(cmt) và NI//PC nên tứ giác NICP là hình bình hành
\(\Rightarrow NP\text{//}IC\)(2)
từ (1) và (2), suy ra \(NP\perp NB\) (đpcm)
Có AB=DC(vì ABCD là Hình Chữ Nhật)
Mà MB=1/2AB
PC=1/2DC
=>MB=PC
MP=BC(Đường Trung Bình)
=>MB=PC=BC=MP
=>MBCP là hình vuông
Còn hình bạn tự vẽ nhé.