A
Cho hình vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia DC tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E. Chứng minh rằng:
a, AE = AN
b,\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho tam giác ABC vuông tại A có cạnh AB = 6cm và AC = 8cm. Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính các đoạn thẳng AM và AN ?
bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC
b, AH^3= BD.CE.BC
Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N
a, CM : tam giác DMN cân
b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB
Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D
a, CM ; \(AB^2 / AD^2= HC /BC\)
b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)
c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD
Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM
a, CM; AM vuông góc AN
b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)
cho hcn ABCD có AB=2AD, 1 đường thg qua A cắt cạnh BC tại M, cắt đg thg CD tại N. c/m:
4/AB2=4/AM2+4/AN2
2. Cho hình vuông ABCD, lấy I thuộc AB, kẻ tia DI cắt đường thẳng BC tại E, kẻ đường thẳng qua D vuông góc DE cắt đường thẳng BC tại F. Chứng minh: \(\dfrac{1}{DI^2}+\dfrac{1}{DE^2}\)không phụ thuộc vào vị trí điểm I.
Cho hcn ABCD, từ D kẻ đường vuông góc với AC tại M và cắt AB, BC lần lượt tại N và I.
Chứng minh DM2=MN.MI và tính góc BMC.
Cảm ơn!!!!
Cho hình vuông ABCD. Qua A kẻ đường thẳng cắt cạnh BC tại E và CD tại F. C/minh: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Cho hình vuông ABCD. Gọi I là một điểm nẳm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng :
a) Tam giác DIL là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}\) không đổi khi I thay đổi trên cạnh AB
Bài tập: Cho hình chữ nhật ABCD có AB= 2BC. Trên BC lấy E, tia AE cắt đường thẳng CD tại F.Đường vuông góc với AF tại A cắt CD tại K.
a) Tính AK/AE
b) Chứng minh 1/AB^2= 1/AE^2 + 1/4AF^2
Giúp mn vs😊😊