a) Xét \(\Delta ABD\perp A\) có :
\(DB^2=AD^2+AB^2\) (Định lí Pitago)
\(\Rightarrow DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
b) Xét \(\Delta ADH,\Delta ADB\) có :
\(\left\{{}\begin{matrix}\widehat{D}:Chung\\\widehat{AHD}=\widehat{BAD}=90^o\end{matrix}\right.\)
\(\Rightarrow\Delta ADH\sim\Delta ADB\left(g.g\right)\) (1)
c) Từ \(\Delta ADH\sim\Delta ADB\left(g.g\right)\) ta có :
\(\dfrac{DH}{AD}=\dfrac{AD}{DB}\)
\(\Rightarrow AD^2=DH.DB\)
d) Xét \(\Delta ABD,\Delta CDB\) có :
\(AD=BC\) (Tứ giác ABCD là hình chữ nhật)
\(AB=DC\) (Tứ giác ABCD là hình chữ nhật)
\(\widehat{BAD}=\widehat{DCB}\left(=90^o\right)\) (Tứ giác ABCD là hình chữ nhật)
=> \(\Delta ABD=\Delta CDB\left(c.g.c\right)\) (2)
Từ (1) và (2) => \(\Delta AHB\sim\Delta BCD\)
e) Ta có : \(S_{\Delta ABD}=\) \(\left\{{}\begin{matrix}\dfrac{1}{2}AD.AB\\\dfrac{1}{2}AH.BD\end{matrix}\right.\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow6.8=AH.10\)
\(\Rightarrow AH=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Xét \(\Delta AHD\perp H\) có :
\(AD^2=AH^2+DH^2\) (Định lí Pitago)
\(\Rightarrow6^2=4,8^2+DH^2\)
\(\Rightarrow DH=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)