Cho hình chópS.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết AD= 2a,AB= BC= a, (SAB) \(\perp\)(ABCD) ; (SAD) \(\perp\)(ABCD) và SA =2a.
a). Chứng minh: SA\(\perp\) (ABCD) .
b). Tính góc giữa đường thẳng SB và ABCD .
c). Gọi O là trung điểm AC. Chứng minh : (SBO) \(\perp\)(SAC) .
d) Tính góc giữa (SCD) và (ABCD).
a/ \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAD\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(SAD\right)=SA\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)
b/ \(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(tan\widehat{SBA}=\frac{SA}{AB}=2\Rightarrow\widehat{SBA}\approx63^026'\)
c/ \(AB=BC\Rightarrow\Delta ABC\) cân tại B
\(\Rightarrow\) BO là trung tuyến đồng thời là đường cao
\(\Rightarrow BO\perp AC\)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BO\)
\(\Rightarrow BO\perp\left(SAC\right)\Rightarrow\left(SBO\right)\perp\left(SAC\right)\)
d/ \(AC=AB\sqrt{2}=a\sqrt{2}\)
Gọi M là trung điểm AD \(\Rightarrow AM=\frac{AD}{2}=a\Rightarrow CM=MD=a\)
\(\Rightarrow CD=CM\sqrt{2}=a\sqrt{2}\)
\(\Rightarrow CD^2+AC^2=AD^2\Rightarrow AC\perp CD\)
\(\Rightarrow\widehat{SCA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{2}\Rightarrow\widehat{SCA}\approx54^044'\)