Cho hình chóp SABCD có đáy ABCD là hình bình hành, M là trung điểm SA. điểm N thuộc đoạn SD sao cho NS=2ND, I là giao điểm của MN với AD.
a) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABCD).
b) Gọi J là giao điểm của CD với BI .Xác dinh giao tuyến của mặt phẳng (BMN) với (SCD), từ đó suy ra thiết diện của hình chóp với mặt phẳng (BMM).
c) Gọi K là giao điểm của BI với AC. Chứng minh BM // KN
Cho hình chóp SABCD có đáy là hình thang vuông tại A, AB=BC=a; AD= 2a; SA vuông với đáy; SA = a. M,N lần lượt là trung điểm của SB, CD. Tính:
a, (SC, đáy)
b, (SB, SAC)
c, (SD, SAB)
d, (SN, SAC)
e, (SA, SCD)
f, (SA, SBC)
h, (MN, SCA) (xác định góc)
cho hình chóp S.ABCD có đáy là hình bình hành và \(C_1\) là trung điểm SC. Mặt phẳng (P) tùy ý chứa A \(C_1\) cắt các cạnh SB,SD lần lượt tại \(B_1,D_1\).
a)Chứng minh rằng: \(\frac{SB}{SB_1}+\frac{SD}{SD_1}=3\)
b) Xác định vị trí của (P) để tam giác \(SB_1D_1\)có diện tích bé nhất
cho hình chóp S.ABCD có đáy là hình vuông ABCD tâm O, SA vuông góc với đáy ABCD. H,K lần lượt là hình chiếu vuông góc của A trên SB, SD.
1, cminh HK song song BD.
2, từ A hạ AI vuông SC. Chứng minh I thuộc mp (AHK) và HK vuông góc với mp(SAC).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = . Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với đáy và SA = \(\text{a}\sqrt{3}\). Gọi AE, AH lần lượt là các đường cao của ΔSAB và ΔSAD
1) Chứng minh rằng: BC ⊥ (SAB), BD ⊥ (SAC)
2) Chứng minh rằng: (SAD) ⊥ (SDC)
3) Chứng minh rằng: AE ⊥ SC và AH ⊥ SC
4) Tính góc giữa: đường thẳng SC và mặt phẳng (SAB), đường thẳng SB và mặt phẳng (SAC)
5) Tính góc giữa (SBD) và (ABCD)
6) Tính khoảng cách từ điểm O đến mặt phẳng (SCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh, tam giác SAB cân tại S. SA=SB=2a, (SAB) \(\perp\) (ABCD)
a, Tính (SD,(ABCD))
b, (SH, (SCD)) với H là trung điểm của
c, (SC, (SAB))
d, (SA, (SBC))
cho hình chóp S.ABCD có đáy là hình vuông cạnh a tâm O. SO vuông góc với đáy và SO=a/2. Gọi I,J là trung điểm của AD và BC. CMR:
a) mp( SAC) vuông (SBD)
b) mp( SIJ) vuông (SBC)
c) mp( SAD) vuông (SBC)
Cho hình chóp SABCD có đáy ABCD là hình thang với AD là đáy lớn và AD = 2BC. Gọi O là giao điểm của AC và BD. G trọng tâm của tam giác SCD.
a) Chứng minh OG // (SBC).
b) Gọi M là trung điểm của cạnh SD Chứng minh: CM // (SAB)
c) Giả sử điểm I trên đoạn SC sao cho 2SC = 3SI . Chứng minh: SA // (BID).
d) Xác định giao điểm K của BG và mặt phẳng (SAC). Tính tỉ số \(\dfrac{KB}{KG}\)