Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và \(SA\perp\left(ABCD\right)\)
a) Chứng minh \(BD\perp SC\)
b) Chứng minh \(\left(SAB\right)\perp\left(SBC\right)\)
c) Cho \(SA=\dfrac{a\sqrt{6}}{3}\). Tính góc giữa SC và mặt phẳng (ABCD)
Cho hình chóp S.ABC có tam giác ABC vuông tại A, góc ABC=60 , SB=AB=a , hai mặt bên (SAB) và (SBC) cùng vuông góc với mặt đáy . Gọi H,K lần lượt là hình chiếu vuông góc của B trên SA,SC .
1. Chứng minh : SB\(\perp\) (ABC) và SC \(\perp\) (BHK) .
2. TÍnh góc tạo bởi SA và (BHK) .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\)
Chứng minh rằng : \(\left(SAC\right)\perp\left(SBD\right)\)
Cho hình chóp SABCD, ABCD là hình vuông tâm O, SA=SC,SB=SD
\(a,CMR:SO\perp\left(ABCD\right)\)
\(b,CMR:\left(SBD\right)\perp\left(ABCD\right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\).. Tính góc giữa hai mặt phẳng (SBD) và (ABCD) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\). Tính góc giữa SC và mp (SAB) ?
Hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc ABC bằng 600 . SO⊥(ABCD), SA = a.
a) Chứng minh AC ⊥(SBD).
b) Tính góc giữa đường thẳng SA và (SBD).
Cho hình chóp SABCD đáy ABCD là hình vuông cạch a SAB là tam giác đều và vuông góc (ABCD) .Gọi H là trung điểm AB a, Chứng minh SH vuông góc với (ABCD) b, chứng minh tam giác SBC vuông cân c, gọi I là trung điểm chứng minh SC vuông góc với DI