Đề bài thiếu những điều sau (nên ko giải được):
- Tam giác ABC là tam giác gì?
- H là điểm nào?
Đề bài thiếu những điều sau (nên ko giải được):
- Tam giác ABC là tam giác gì?
- H là điểm nào?
1.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và SA vuông góc với mặt phẳng (ABC).
a. Chứng minh (SBC) ⊥ (SAB).
b. Tính góc giữa hai mặt phẳng (SBC) và (ABC), biết AC=a√3 , SA= a√6 , BC = a
2.Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD) và SA= a√2/2
a. Chứng minh (SAC)⊥ (SBD).
b. Tính góc giữa hai mặt phẳng (SBD) và (ABCD)
cho hình chóp SABCD có SA vuông góc (ABCD), ABCD là hình vuông
a.cm: BD vuông góc (SAC)
b.cm: tam giác SBC, tam giác SCD vuông
c.H là chân đường cao kẻ từ A lên SB. cm AH vuông góc (SBC)
Cho hình chóp SABCD đáy là hình chữ nhạt, (SAB) và (SAD) cùng vuông góc với đáy.
a, CM: SA ⊥ (ABCD)
b, CM: (SBC) ⊥ (SAB)
Cho hình chóp S.ABC có SA vuông góc với đáy, SA=2a, SA vuông góc với đáy, gọi H, K lần lượt là hình chiếu vuông góc của A trên SB, SC; biết tam giác ABC đều cạnh a. Xác định góc giữa các mặt phẳng : (SBC) và (SAC)
Cho hình chóp SABCD, ABCD là hình vuông. SC vuông góc (ABCD). Gọi CN, CM lần lượt là đường cao của tam giác SCD và tam giác SBC
a) Chứng minh CN vuông góc với SA
b) Chứng minh CM vuông góc với SA
c) Chứng minh SA vuông góc với MN
Cho hình chóp S.ABCD có SA ⊥ ABC . Tam giác ABC vuông tại B. Gọi H là hình chiếu của A trên SB, trong các khẳng định sau khẳng định nào là đúng:
(1) AH vuông góc SC
(2) BC Vuông góc (SAB)
(3) SC vuông góc SC
có bao nhiêu khẳng định đúng
A 1
B2
C3
D 0
Cho hình chóp SABC có đáy ABC là tam giác vuôg tại B và có SA vuôg vs mp (ABC). a/ cm: BC vuôg (SAB) b/ Giả sử SA=a căn 3 và AB= a, tính góc giữa đường thẳng SB và mp(ABC) c/ Gọi AM là đường cao của tam giác SAB, N là điểm thuộc cạnh SC. cm: (AMN) vuôg (SBC)?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh, tam giác SAB cân tại S. SA=SB=2a, (SAB) \(\perp\) (ABCD)
a, Tính (SD,(ABCD))
b, (SH, (SCD)) với H là trung điểm của
c, (SC, (SAB))
d, (SA, (SBC))
cho S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=\(a\sqrt{3}\) ,SA=2A, SA vuông góc (ABC).
a) sin (SB,(SAC))
b) tan ((SAC),(SBC))