Hình chóp tam giác đều S.ABC có SA = SB = SB = a và có góc giữa hai mặt bên và mặt phẳng đáy \(\left(\alpha\right)\). Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB, SBC, SCA cắt hình trụ theo những giao tuyến như thế nào ?
Cho hình chóp tứ giác đều S.ABCD có chiều cao \(SO=h,\widehat{SAB}=\alpha,\left(\alpha>45^0\right)\). Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp ?
Cho hình nón tròn xoay có đường cao \(h=20cm\), bán kính đáy \(r=25cm\)
a) Tính diện tích xung quanh của hình nón đã cho
b) Tính thể tích của khối nón được tạo thành bởi hình nón đó
c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12cm. Tính diện tích thiết diện đó ?
Cho S.ABC là hình chóp tam giác đều có các cạnh bên bằng a và có góc giữa các mặt bên và mặt phẳng đáy là \(\alpha\). Hình nón đỉnh S có đường tròn đáy nội tiếp tam giác đều ABC gọi là hình nón nội tiếp hình chóp đã cho. Hãy tính diện tích xung quanh của hình nón này theo a và \(\alpha\)
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt{2}\)
a) Tính diện tích xung quanh, diện tích đáy và thể tích của khối nón tương ứng
b) Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc \(60^0\). Tính diện tích tam giác SBC ?
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha\)
a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên ?
b) Gọi I là một điểm trên đường cao DO của hình nón sao cho \(\dfrac{DI}{DO}=k;\left(0< k< l\right)\). Tính diện tích thiết diện qua I và vuông góc với trực của hình nón ?
Một hình trụ có các đáy là hai hình tròn tâm O và O' bán kính r và có đường cao \(h=r\sqrt{2}\). Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O' sao cho OA vuông góc với O'B
a) Chứng minh rằng các mặt bên của tứ diện OABO' là những tam giác vuông. Tính thể tích của tứ diện này ?
b) Gọi \(\left(\alpha\right)\) là mặt phẳng qua AB và song song với OO'. Tính khoảng cách giữa trục OO' và mặt phẳng \(\left(\alpha\right)\)
c) Chứng minh rằng \(\left(\alpha\right)\) tiếp xúc với mặt trục OO' có bán kính bằng \(\dfrac{r\sqrt{2}}{2}\) dọc theo một đường sinh
Một hình trụ có bán kính đáy bằng 50cm và có chiều cao h = 50cm
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên ?
b) Một đoạn thẳng có chiều dài 100cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ
ba đọan SA,SB,SC đôi một cùng vuông góc tạo thành một từ diện SABC với SA=á,SB=2a,SC=3a.bán kính mặt cầu ngoại tiếp tứ diện SABC là :