+) Xét △ABC có MN là đường trung bình ⇒MN//AC
Mà MN∈ (SMN) ⇒AC// (SMN)
+) Xét △SMN có \(\dfrac{SG1}{SM}\)=\(\dfrac{SG2}{SN}\)=\(\dfrac{2}{3}\)( Tính chất trọng tâm)
⇒G1G2//MN ⇒ G1G2//AC ( Vì AC//MN)
Mà AC∈(SAC) ⇒ G1G2// (SAC)
+) Xét △ABC có MN là đường trung bình ⇒MN//AC
Mà MN∈ (SMN) ⇒AC// (SMN)
+) Xét △SMN có \(\dfrac{SG1}{SM}\)=\(\dfrac{SG2}{SN}\)=\(\dfrac{2}{3}\)( Tính chất trọng tâm)
⇒G1G2//MN ⇒ G1G2//AC ( Vì AC//MN)
Mà AC∈(SAC) ⇒ G1G2// (SAC)
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB)
c) Giả sử điểm I nằm trong đoạn SC sao cho \(SC=\dfrac{3}{2}SI\). Chứng minh rằng SA // (BID)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . Tam giác SAB đều và \(SC=a\sqrt{2}\) . Gọi H và K lần lượt là trung điểm AB và AD .
a) chứng minh \(SH\perp\left(ABCD\right)\)
b) chứng minh \(AC\perp SK\) và \(CK\perp SD\) .
Cho hình chóp S.ABCD, ABCD là tứ giác không có cặp cạnh nào song song với nhau. Gọi M, N, K theo thứ tự là trung điểm của AB, AD, CD. I, J theo thứ tự là trọng tâm △SAB, △SAD.
a)Tìm giao tuyến của các cặp mặt phẳng sau: (SAC)\(\cap\) (SBD); (SAB) \(\cap\) (SCD) và (SAD) \(\cap\) (SBC)?
b)Tìm giao điểm của đt MN và mặt phẳng (SAC)?
c)Cmr: IJ//MN và MN//BD. Từ đó suy ra:IJ//(ABCD)
d)Tìm giao tuyến của 2 mặt phẳng (IJK) và (ABCD)
e)Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IJK)?
Cho hình chóp S.ABCD, đáy là hình thang có AB//CD và AB=2CD. G là trọng tâm tam giác SAD. O là giao điểm của AC và BD. Chứng minh OG//(SCD).
Bài 2 :Cho hình chóp S.ABCD. Tứ giác ABCD là hình bình hành Gọi M, N, P lần lượt là trung điểm AB, CD và SA. a. CMR MN song song với các mp (SBC) và (SAD) b.Xác định giao tuyến của (SBD) với mp(MNP) c.CMR SC song song với (MNP) d.Gọi G,G, lần lượt là trọng tâm các tam giác ABC và tam giác anh CMR GG, // với (SAD)
Cho hình chóp tứ giác S.ABCD. Gọi I,J lần lượt là trung điểm của SA, SB và M là giao của AC và BD. Chọn khẳng định đúng? A. IJ//(SAB) B. IJ//(MDC) C. IJ//(SDC). D. IJ//(JDC)