Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\).Gọi O là tâm hình vuông ABCD và M là trung điểm SC.
a) CM (MBD) vuông góc với (SAC)
b)Góc (SA,(ABCD))=?
c)Góc ((MBD),(ABCD))=?
d)Góc ((SAB),(ABCD))=?
mọi người giúp em câu b với c nhé, cảm ơn mọi người nhiều
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng a√3 . O là tâm hình vuông . Chứng minh (SAC) vuông góc (ABCD) ; (SAC) vuông góc (SBD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a; AD= \(a\sqrt{3}\). Hai tam giác SAB và SAD vuông tại S. Tìm vecto vuông góc \(\overrightarrow{SA}\) ?
Cho hình chóp tứ giác S.ABCD có đáy là một hình vuông, độ dài tất cả các cạnh của hình chóp đã cho bằng a. Tính tích vô hướng \(\overrightarrow{SA}.\overrightarrow{SC}\)
cho hình chóp s abcd có đáy abcd là hình chữ nhật CMR : a, SA + SC =SB +SD
b SA^2 +SC^2 = SB^2+SD^2
Cho tứ diện ABCD, biết BD vuông góc với AC và CD vuông góc với AB. Chứng minh rằng AD vuông góc với BC.
Cho hình bình hành ABCD. Gọi S là một điểm nằm ngoài mặt phẳng chứa hình bình hành.
Chứng minh rằng :
\(\overrightarrow{SA}+\overrightarrow{SC}=\overrightarrow{SB}+\overrightarrow{SD}\)
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi O và O' theo thứ tự là tâm của hai hình vuông ABCD và A'B'C'D'
a) Hãy biểu diễn các vectơ \(\overrightarrow{AO},\overrightarrow{AO'}\) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho
b) Chứng minh rằng :
\(\overrightarrow{AD}+\overrightarrow{D'C}+\overrightarrow{D'A'}=\overrightarrow{AB}\)