Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB là tam giác đều , SC =a căn 2. Gọi H là trung điểm AB
a) CM : BC vuông (SAB) và SH vuông (ABCD)
b) Gọi M là trung điểm CD , α là góc giữa đt SM và (ABCD) . Xác định α và tính tan α
c) Gọi K là trung điểm AD . CM AC vuông SK
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ,AB=a,AD=a√3 , mp(SAB)vuông góc với đáy và tam giác SAB cân tại S , I là trung điểm AB , K là trung điểm CD góc giữa SB và mp đáy là 45 độ . a) chứng minh SI vuông vs (ABCD) b)chứng minh rằng (SIK)vuông (SCD) c) tính góc giữa SC và (SAB)
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh a, tam giác SBC vuông cân đỉnh S. Gọi I là trung điểm cạnh BC.
a. Chứng minh BC vuông góc với SA.
b. Cho biết SA > AI và góc IAS bằng 30 độ. Chứng minh rằng SI vuông góc với IA.
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh bằng a , mặt bên (SBC) vuông góc với đáy. Gọi M, N, P theo thứ tự là trung điểm AB, SA, AC . Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh bằng a , mặt bên (SBC) vuông góc với đáy. Gọi M, N, P theo thứ tự là trung điểm AB, SA, AC . Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Cho hình chóp S.ABCD , đáy ABCD là hình thang vuông tại A và D . SA vuông góc với (ABCD ) , AD=DC=AB/2=a , SA=a căn 3. Gọi I là trung điểm AB. CMR a. CI vuông góc (SAB ) , DI vuông góc (SAC) b. Các mặt bên hình chóp là những tam giác vuông
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,AB=a√3 , cạnh bên SA vuông góc với mặt đáy , SA = a√3/2 , M là trung điểm của BC. a. Chứng minh BC vuông góc với (SAM) B. Tính góc giữa đường thẳng SM và mặt phẳng (ABC)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, BC=a√3 ; ∆SBC vuông tại B, ∆SCD vuông tại A, SD=a√5a, Chứng minh SA ⊥ (ABCD) và tính SAb, Đường thẳng qua A vuông góc với AC cắt CB, CD tại I và J. Gọi H là hình chiếu vuông góc của A lên SC. Xác định K và L lần lượt là giao điểm của SB và SD với mặt (HIJ). Chứng minh AK ⊥ (SBC) ; AL⊥(SCD).c, Tính diện tích tứ giác AKHL
Hình chóp S.ABCD, ABCD là hình vuông và tam giác SAB đều cạnh a. I là trung điểm AB. SI vuông góc với đáy. Tính góc giữa SC và mp(SAD)
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot \frac{BO}{OC}\cdot \frac{CQ}{QA} = 1,$$ $$\frac{SD}{SC}\cdot \frac{CO}{OB}\cdot \frac{BP}{PA} = 1,$$ trong đó $Q$ là giao điểm của $SN$ và $OM$. Do đó, ta có: $$\frac{SM}{SB} = \frac{SC}{SO},$$ $$\frac{SD}{SC} = \frac{SB}{SO}.$$ Tiếp theo, ta chứng minh $AP \parallel DC$. Ta có $\angle BSA = 90^{\circ}$ và $\angle BSC = \angle DSC$ nên tam giác $BSD$ vuông cân tại $S$. Do đó $SM = NS$. Khi đó, ta có: $$\frac{SM}{SB} = \frac{NS}{NB} = \frac{1}{2}.$$ Từ đó ta suy ra $\frac{SC}{SO} = \frac{1}{2}$, hay $SO = 2SC$. Áp dụng định lí Pythagore trong tam giác $SBO$ ta có: $SB = \sqrt{2}a$. Mặt khác, ta có $OM = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $BM = \frac{\sqrt{2}}{2}a$ và $BO = \frac{\sqrt{6}}{2}a$. Áp dụng định lí Pythagore trong tam giác $SDO$ ta có: $SD = \sqrt{6}a$. Mặt khác, ta có $ON = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $DN = \frac{\sqrt{2}}{2}a$ và $DO = \frac{\sqrt{6}}{2}a$. Ta có $AP \parallel DC$ khi và chỉ khi: $$\frac{BP}{PA} = \frac{AD}{DC} = \sqrt{2} - 1,$$ trong đó ta đã sử dụng tính chất hình học của hình vuông. Từ định lí Menelaus cho tam giác $ACD$, ta có: $$\frac{AD}{CD}\cdot \frac{CP}{PA}\cdot \frac{NB}{ND} = 1.$$ Do đó, ta có: $$\frac{BP}{PA} = \frac{AD}{CD}\cdot \frac{ND}{NB} = (\sqrt{2} - 1)\cdot \frac{\frac{1}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{2 - \sqrt{2}}{2}.$$ Ta cũng có thể tính được $\frac{PM}{PN}$ bằng cách sử dụng định lí Menelaus cho tam giác $ANB$: $$\frac{AP}{PB}\cdot \frac{MB}{MN}\cdot \frac{SN}{SA} = 1,$$ từ đó ta có: $$\frac{PM}{PN} = \frac{SN}{SM}\cdot \frac{PB}{PA}\cdot \frac{MB}{NB} = \frac{2}{1}\cdot \frac{2 - \sqrt{2}}{2}\cdot \frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{1}{3}.$$ Vậy $\frac{PM}{PN} = \frac{1}{3}$, ta đã chứng minh được bài toán.