BC vuông góc CD tại C
Kẻ BK vuông góc SC tại K
=>d(B;(SCD))=BK
\(SB=\sqrt{\left(5a\right)^2+\left(2a\right)^2}=a\sqrt{29}\)
\(AC=2a\sqrt{2}\)
=>\(SC=a\sqrt{33}\)
Vì BC^2+BS^2=SC^2
nên ΔSBC vuông tại B
\(BK=\dfrac{BS\cdot BC}{SC}=\dfrac{2\sqrt{29}\cdot a}{\sqrt{33}}\)