Cho hình chóp sabcd có đáy là hình vuông cạnh 2a, sa vuông góc với đáy sa= 5a. Tính khoảng cách từ điểm C tới (scd). Tính khoảng cách từ điểm b đến (scd)
Cho hình chóp sabcd có đáy là hình vuông cạnh 2a, sa vuông góc với đáy da=5. Tính khoảng cách từ điểm C tới (scd). Tính khoảng cách từ điểm b đến (scd)
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CD, SA. Tìm giao tuyến của (MNP) vs các mp (SAB), (SAD), (SBC), (SCD).
Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của hai mặt phẳng :
a) (SBM) và (SCD)
b) (ABM) và (SCD)
c) (ABM) và (SAC)
Cho hình chóp SABCD có đáy ABCD là hình bình hành . Gọi I , J là hai điểm nằm trên SB và SD sao cho SI = 1/3 SB , SJ = 2JD . Tìm giao điểm của :
a) IJ và (ABCD)
b) BJ và (IAC)
c) SA và (ACJ)
d) IJ và (SAC).
Cho hình chóp SABCD , đáy ABCD có các cặp cạnh đối không song song. Lấy M,N lần lượt nằm trên SA và SB sao cho MN không song song SB. G là trọng tâm ∆BCD. Xác định: a) Giao tuyến giữa (SAB) và (SDC), (MNC) và (SBD) b) Giao điểm CM với (SND), MG với (SBD) C) Thiết diện hình chóp khi cắt bởi mặt phẳng (MNG)
cho hình chóp SABCD có đáy là hbh
M là trung điểm của SB
G là trọng tâm của tam giác SAD
chứng tỏ (CMG) đi qua trung điểm SA