Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi M, N lần lượt là trung điểm của SA và SC. Mặt phẳng (α) qua M và song song với (SBD). Mặt phẳng (β) qua N và song song với (SBD).
a) Xác định thiết diện của hình chóp lần lượt cắt bởi mặt phẳng (α) và (β).
b) Gọi I và J lần lượt là giao điểm của AC với hai mặt phẳng nói trên. Chứng minh: AC = 2IJ.
a/ Qua M kẻ đường thẳng song song SD cắt AD tại P \(\Rightarrow\) P là trung điểm AD (t/c đường trung bình)
Qua M kẻ đường thẳng song song SB cắt AB tại Q thì Q là trung điểm AB
\(\Rightarrow\) MPQ là thiết diện của (\(\alpha\)) và chóp
Qua N kẻ đường thẳng song song SD cắt CD tại E \(\Rightarrow\) E là trung điểm CD
Qua N kẻ đường thẳng song song SB cắt BC tại F thì F là trung điểm BC
\(\Rightarrow\) NEF là thiết diện của \(\left(\beta\right)\) và chóp
b/ Gọi giao điểm của PQ và EF với AC lần lượt là I và J
Gọi O là giao điểm AC và BD
Ta có PI và EJ lần lượt là đường trung bình của các tam giác ADO và CDO
\(\Rightarrow\left\{{}\begin{matrix}IO=\frac{1}{2}AO\\JO=\frac{1}{2}CO\end{matrix}\right.\) \(\Rightarrow IO+JO=\frac{1}{2}\left(AO+CO\right)\)
\(\Rightarrow IJ=\frac{1}{2}AC\)