Ôn tập cuối năm môn Đại số 11

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiều Ngọc Tú Anh

Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA=\(a\sqrt{3}\). Cạnh bên SA vuông góc (ABCD)

a. Chứng minh: BC vuông góc (SAB), (SBD) vuông góc (SAC)

b. Gọi AH là đường cao của tam giác SAB. Chứng minh AH vuông góc SC

c. Hãy xác định và tính góc giữa đường thẳng SB và (ABCD)

Nguyễn Việt Lâm
27 tháng 4 2019 lúc 17:45

S A B C D H

a/ \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\)

\(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(BD\perp AC\) (t/c hình vuông) \(\Rightarrow BD\perp\left(SAC\right)\)

\(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

b/

\(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)

c/

\(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{a\sqrt{3}}{a}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)


Các câu hỏi tương tự
hnt Yuri
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn lê
Xem chi tiết
sgfr hod
Xem chi tiết
sgfr hod
Xem chi tiết
sgfr hod
Xem chi tiết
Luân Trần
Xem chi tiết