Giải
đàu tiên ta tìm bán kính đường tròn ngoại tiếp tam giác cân ABE (EA=EB)
R=\( \frac{AE.EB.AB}{4S}\) =\(\frac{5}{8}\) .Gọi I là tâm đường trong ngoại tiếp→AI=\(\frac{5}{8}\) .Gọi N là trung điểm SA
Trong mp(SAI) từ I kẻ đt d vuông góc vs đáy.Từ N kẻ đt vuông góc SA cắt d tại O
suy ra O là tâm mặt cầu cần tìm
dựa vào tam giác vuông OAI suy ra bán kính mặt cầu =\(\sqrt{OI^2 +AI^2}\)=\(\frac{\sqrt{41}}{8}\)
suy ra diện tích mặt cầu=4π\(R^2\) suy ra C