Gọi \(I\) là tâm của đáy \(ABCD\) (giao điểm của \(AC\) và \(BD\))
a) Vì đây là hính chóp đều nên có ngay \(SI\) là đường cao kẻ từ S
\(SI=\sqrt{SA^2-AI^2}=\sqrt{SA^2-\frac{AB^2}{2}}=a\sqrt{2}\)
\(V_{S.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{4a^3\sqrt{2}}{3}\)
b) Thấy ngay \(IA=IB=IC=ID=IS=a\sqrt{2}\)
suy ra tâm mc ngoại tiếp là \(I\) và \(R=a\sqrt{2}\)
c) bạn dùng công thức sau để tính bán kính mặt cầu nội tiếp
\(r=\frac{3V_{S.ABCD}}{S_{ABCD}+4S_{SAB}}=\frac{\frac{4a^3\sqrt{2}}{3}}{4a^2+4.\frac{a^2\sqrt{3}}{2}}=\frac{4\sqrt{2}-2\sqrt{6}}{3}.a\)