Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.
Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.
Ta có SJ = .
Do SC vuông góc (SAB) nên IJ // SC.
Gọi H là trung điểm SC, ta có SH = IJ = .
Do vậy, IS2 = IJ2 + SJ2 = (a2 + b2 + c2)/4 và bán kính hình cầu ngoại tiếp S.ABC là
r = IS = .
Diện tích mặt cầu là:
S = 4 πr2 = π(a2 + b2 + c2) (đvdt)
Thể tích khối cầu là : (đvtt)