Bài 2: Mặt cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình chóp A.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó ?

Hai Binh
27 tháng 4 2017 lúc 17:35

Gọi I là tâm cầu ngoại tiếp hình chóp tam giác S.ABC. Hạ IJ vuông góc (SAB), vì J cách đều 3 điểm S, A, B nên J cũng cách đều 3 điểm S, A, B.

Vì tam giác SAB vuông đỉnh S nên J là trung điểm của AB.

Ta có SJ = .

Do SC vuông góc (SAB) nên IJ // SC.

Gọi H là trung điểm SC, ta có SH = IJ = .

Do vậy, IS2 = IJ2 + SJ2 = (a2 + b2 + c2)/4 và bán kính hình cầu ngoại tiếp S.ABC là

r = IS = .

Diện tích mặt cầu là:

S = 4 πr2 = π(a2 + b2 + c2) (đvdt)

Thể tích khối cầu là : (đvtt)




Các câu hỏi tương tự
Phạm Thị Thu Trang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
09. Cao Viết Cường 12A1
Xem chi tiết
Hiệp Phạm
Xem chi tiết
Thái Nguyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Quang Minh Hồng
Xem chi tiết