Cho hình chóp S.ABCD có SA⊥(ABCD)SA⊥(ABCD)và đáy ABCD là hình vuông. Gọi H,K là hình chiếu của A lên SB,SD
a) Cm AH⊥(SBC)
b) Cm AK⊥(SCD)
c) Qua K vẽ đường thẳng vuông góc với SD tại K cắt CD tại M. Cm SD⊥(BKM)
Cho hình chóp S.ABCD, có đáy ABCD là hình vuông tâm O có cạnh bằng a,SA=a√3 và SA vuông góc với (ABCD) a,CMR:DC vuông góc với (SAD) b, Tính góc giữa đường thẳng SD và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, BC=a√3 ; ∆SBC vuông tại B, ∆SCD vuông tại A, SD=a√5a, Chứng minh SA ⊥ (ABCD) và tính SAb, Đường thẳng qua A vuông góc với AC cắt CB, CD tại I và J. Gọi H là hình chiếu vuông góc của A lên SC. Xác định K và L lần lượt là giao điểm của SB và SD với mặt (HIJ). Chứng minh AK ⊥ (SBC) ; AL⊥(SCD).c, Tính diện tích tứ giác AKHL
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a,AD=2a,SC=3a và SC vuông góc với mặt phẳng (ABCD). Tính góc giữa BD và (SAD)
Giúp em với ạ em cảm ơn nhìu!!!
Cho hình chóp SABCD, có đáy là hình vuông tâm O. SA ⊥ (ABCD). Gọi H,I,K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD.
a) Cm: BC⊥(SAB), CD⊥(SAD), BD⊥(SAC)
b) Cm: AH⊥(SBC), AK⊥(SCD)
c) Cm: HK⊥(SAC). Từ đó suy ra HK⊥AI
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, SA vuông góc (ABCD). a) CM : BC vuông góc (SAB) và các mặt bên của hình chóp là các tam giác vuông. b) Gọi H,K là hình chiếu của A trên SB và SO. C/M : AH vuông góc SC va AK vuông góc BD c) C/M : K là trực tâm tam giác SBD
Cho hình chóp S.ABCD, SA vuông góc mp(ABCD). \(SA=a\sqrt{3}\). ABCD là hình chữ nhật. AB=a. \(AD=a\sqrt{3}\)
Tìm góc giữa
a) (SAC) và (SBC)
b) (SBC) và (SCD)
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, AB = SA = a, SA vuông góc với (ABCD). Gọi (P) là mặt phẳng qua A và vuông góc với SC, (P) cắt SB, SC, SD lần lượt tại H, I, K.
a, Chứng minh HK // BD.
b, Chứng minh AH vuông góc với SB, AK vuông góc với SD.
c, CM tứ giác AHIK có 2 đường chéo vuông góc. Tính diện tích AHIK theo a.
Mình không xác định được mp (P) nên giúp mình vẽ cả hình nữa nhé! Cảm ơn nhiều.
Cho hình chóp S ABCD, có đáy là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD.
1.CMR : AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng.
2. Chứng minh rằng HK⊥(SAC) , HK ⊥ AI.