Đề toán: Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O.
a/ Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
c/ Gọi M, N lần lượt là trung điểm của SA và SB, K là một điểm nằm giữa B và C. Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK).
Cho hình chóp SABCD. Đáy ABCD là hình bình hành. M là trọng tâm tam giác SAB, N là trung điểm SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao tuyến của (SAD) và (SBC).
c) Tìm giao điểm của MN và (ABCD). d) Tìm I là giao điểm của SM và (ABCD).
e) F là giao điểm của CI và BD. Chứng minh rằng: MF// (SAD).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N là trung điểm của SB và SD,P thuộc SC sao cho PC<PS. Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(MNP) và (SBD)
c,(MNP) và (SAC)
d,(MNP) và (SAB)
e,(MNP) và (SAD)
f,(MNP) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là điểm thuộc SA sao cho SM=3MA. a, Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b, Tìm giao tuyến H của MO và mặt phẳng (SCD)
Cho chóp S.ABCD đáy là hình bình hành tâm O. M là điểm trên cạnh SD sao cho SD = 3SM.
a) Tìm giao tuyến (SAC) và (SBD); (SAB) và (SCD)
b) Tìm giao điểm I của BM và (SAC) . Chứng tỏ I là trung điểm của SO
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD là đáy lớn. Gọi M,N là trung điểm lần lượt của BC và CD.Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(SMN) và (SAD)
c,(SAB) và (SCD)
d,(SMN) và (SAC)
e,(SMN) và (SAB)
Cho chóp S.ABCD có đáy ABCD là hình vuông. Tìm giao tuyến của các cặp mặt phẳng cho M thuộc BC, N thuộc CD a)) (SBC) và (SOM) b) (SCD) và (SAN) c) (SAM) và (SBC) d) (SAM) và (SBD) e) (SAN) và (SBD) f) (SCD) và (ABCD) g) (SBC) và (ABCD) h) (SMN) và (ABCD)