\(\Delta ABC\) đều \(\Rightarrow AM\perp BC\) (1)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(SAM\right)\)
b/ \(BC\perp\left(SAM\right)\) mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(AM=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=2\)
\(\Rightarrow\widehat{SMA}\approx63^026'\)
c/ Từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(\frac{1}{AH^2}=\frac{1}{AM^2}+\frac{1}{SA^2}\Rightarrow AH=\frac{AM.SA}{\sqrt{AM^2+SA^2}}=\frac{a\sqrt{15}}{5}\)