Cho hình bình hành ABCD một điểm M nằm trên đường chéo AC đường thẳng BM cắt CD tại E và cắt AD tại F chứng minh MB2=ME.MF
cho hình thnag abcd (ab//cd), hai đường chéo ac và bd cắt nhau taiij o . một đường thẳng d qua o // với 2 đáy cắt ad tại e, bc tại f . chứng minh 1/ab +1/cd =2/ef
Câu 5: Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD tại E. Đường thẳng qua B và song song với AD cắt AC ở F. Chứng minh EF //DC.
Câu 6: Cho hình thang ABCD có AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tị M, N. Chứng minh rằng OM = ON.
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a
cho hình bình hành ABCD. một đường thẳng d cắt AB , BC, BD thứ tự tại M N I. chứng minh rằng : \(\dfrac{AB}{MB}+\dfrac{BC}{BN}=\dfrac{BD}{BI}\)
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
Cho hình thang ABCD (AB//CD). M∈AD, N∈BC sao cho AM/MD =CN/NB . MN cắt BD, AC lần lượt tại E và F. Qua M kẻ đường thẳng song song với AC cắt DC tại H. AC cắt BD tại O, HO cắt MN tại I. Chứng minh:
a) HN//BD.
b) IE=IF, ME=MF.
Cho hình thang ABCD (AB// CD) AB< CD, AC giao BD = { O }. Đường thẳng qua A // BC cắt BD ở E, cắt CD tại M. Đường thẳng qua B // AD cắt AC tại F cắt CD tại N. Chứng minh:
a. EF // AB
b. AB2 = EF.CD
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN