cho hình bình hành ABCD; M,N thoả mãn \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\) (x,y thuộc R+) Đường thẳng MN cắt AC tại E. Tính \(\overrightarrow{ẢE}\) theo \(\overrightarrow{AC}\); x và y
Cho hình bình hành ABCD tâm O.Khẳng định nào sau đây sai?
A, \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}\)
B. \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
C. \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}\)
D. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh: \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\) ; \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)
Cho hình bình hành ABCD. Hãy xác định các vecto bằng nhau. Gọi O là giao điểm của 2 đường chéo. Đường thằng qua O cắt 2 cạnh AB và CD theo thứ tự tại E và F. CMR:
\(\overrightarrow{OE}+\overrightarrow{OF}=0\)
\(\overrightarrow{AE}+\overrightarrow{CF}=0\)
\(\overrightarrow{DE}+\overrightarrow{BF}=0\)
Bài 1:
Cho điểm I thuộc đoạn thẳng AB, I khác A và B. Chứng minh rằng \(\overrightarrow{OI}=\frac{IB}{IA}\overrightarrow{OA}+\frac{IA}{AB}\overrightarrow{OB}\forall O\)
Bài 2:
Cho tam giác ABC, các điểm M,N,P thỏa mãn \(\overrightarrow{BM}=\frac{-1}{3}\overrightarrow{BC},\overrightarrow{AN}=\frac{2}{5}\overrightarrow{AC},\overrightarrow{AP}=x\overrightarrow{AB}.\)Tìm x biết rằng M,N,P thẳng hàng.
Ai giúp mình với chiều mai kiểm tra 2 bài này rồi mà mình nháp mãi chẳng ra.... :<
Cho ΔABC . Các điểm M ,N , P lần lượt là trung điểm AB , AC , BC .
Xác định hiệu \(\overrightarrow{AM}-\overrightarrow{AN}\), \(\overrightarrow{MN}-\overrightarrow{NC}\), \(\overrightarrow{MN}-\overrightarrow{PN}\), \(\overrightarrow{BP}-\overrightarrow{CP}\)
BÀI 1: Cho tứ giác ABCD . M,N lần lượt là trung điểm AD,BC.
a) chứng minh \(\overrightarrow{MN}\) = \(\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
b) Gọi I nằm trên đoạn MN sao cho IM = 2IN. Chứng minh rằng \(\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}+\overrightarrow{ID}=O\)
BÀI 2 : Cho hình bình hành ABCD.Gọi O là điểm bất kì trên cạnh AC.Từ O kẻ các đường thẳng // với các cạnh.Các đường này lần lượt cắt AB,BC,CD,DA tại M,F,N,E.Chứng minh : \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)