Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD).
Chứng minh rằng :
\(AB.AE+AD.AF=AC^2\)
Cho hình bình hành ABCD. Giả sử AC là đường chéo lớn, từ C kẻ CE và CF lần lượt vuông góc với AB và AD. Chứng minh rằng: AB.AE + AD.AF = AC\(^2\)
Help me
Hình bình hành ABCD có AM vuông góc với BC, AN vuông góc với DC. CMR:
a) Tam giác ADN đồng dạng với tam giác ABN
b) Tam giác MAN đồng dạng với tam giác ABC
c) Giả sử AC là đường chéo lớn của hbh ABCD, vẽ CE vuông góc với AB, CF vuông góc với AD. CMR: AB.AE+AD.AF=AC^2.
Cho hình bình hành ABCD (góc A nhỏ hớn 90 độ), lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
Cho tam giác ABC có đường cao AD. Hạ DM, DN lần lượt vuông góc với AB,AC. Trên AC lấy Y sao cho DY song song AB. Gọi F là giao điểm của MN và DY. Chứng minh rằng CF vuông góc với DY.
Cho hình thoi ABCD có \(\widehat{ABC}< 90^0\). Gọi O là giao điểm của 2 đường chéo AC và BD. Kẻ OH vuông góc với BC. Gọi M và N là 2 điểm lần lượt thuộc DC và DA, sao cho \(\widehat{MON}=\widehat{DAC}\). Chứng minh rằng 3 đường thẳng BM ; HN và AC đồng quy tại I
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Bài 1. Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Biết AC = BD và AC vuông góc BD. Chứng minh: a) EFGH là hình bình hành. b) EFGH là hình chữ nhật. c) EFGH là hình thoi. d) EFGH là hình vuông
CHO TAM GIÁC ABC NHỌN , ĐƯỜNG PHÂN GIÁC AD ( D THUỘC BC) . KẺ HÌNH BÌNH HÀNH ABDE a) CHỨNG MÌNH AE/DC=AB/AC b)BE VÀ DE CẮT AC LẦN LƯỢT TẠI M VÀ N .c) CHỨNG MINH TAM GIÁC MAE ĐÔNG DẠNG VỚI TAM GIẮC MCB d)CHỨNG MINH:1/AM=1/AN+1/AC