Cho tam giác ABC có trọng tâm G; D và E là các điểm bởi \(\overrightarrow{AG}=\dfrac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})\)
a) Chứng minh \(\overrightarrow{AG=}\dfrac{1}{3}\overrightarrow{(AB}+\overrightarrow{AC)}\)
b) Tính \(\overrightarrow{DE}\) và \(\overrightarrow{DG}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Chứng minh \(\overrightarrow{DE}\) // \(\overrightarrow{DG}\) . Suy ra D, E, G thẳng hàng
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
BÀI 1: Cho tứ giác ABCD . M,N lần lượt là trung điểm AD,BC.
a) chứng minh \(\overrightarrow{MN}\) = \(\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
b) Gọi I nằm trên đoạn MN sao cho IM = 2IN. Chứng minh rằng \(\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}+\overrightarrow{ID}=O\)
BÀI 2 : Cho hình bình hành ABCD.Gọi O là điểm bất kì trên cạnh AC.Từ O kẻ các đường thẳng // với các cạnh.Các đường này lần lượt cắt AB,BC,CD,DA tại M,F,N,E.Chứng minh : \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Cho tam giác ABC có trọng tâm G. Gọi M thuộc cạnh BC sao cho \(MB=2MC\). Chứng minh:
a) \(\overrightarrow{AB}+2\overrightarrow{AC}=\overrightarrow{3AM}\)
b) \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
Cho hình bình hành ABCD. Trên BD lấy các điểm G và H sao cho \(DG=GH=HB\)
a) Chứng minh \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}+\overrightarrow{AH}\).
b) Giả sử AH cắt Bc tại M, AG cắt CD tại N. Chứng minh: \(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
Cho tam giác ABC đều cạnh bằng a\(\sqrt{3}\) , M là trung điểm BC. Tính độ dài các vecto
a/ \(\overrightarrow{BA}-\dfrac{1}{2}\overrightarrow{BC}\)
b/ \(\dfrac{1}{2}\overrightarrow{AB}+2\overrightarrow{AC}\)
c/ \(\dfrac{3}{4}\overrightarrow{MA}-\dfrac{5}{2}\overrightarrow{MB}\)
cho hình bình hành ABCD; M,N thoả mãn \(\overrightarrow{AM}=x\overrightarrow{AB}\) ; \(\overrightarrow{AN}=y\overrightarrow{AD}\)(x,y thuộc R+) Đường thẳng MN cắt AC tại E. Tính \(\overrightarrow{AE}\) theo \(\overrightarrow{ÃC}\); x và y
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh: \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\) ; \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)