Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho hình bình hành ABCD. Qua A kẻ đường thẳng cắt đường chéo BD, tia đối của tia CB và cạnh DC lần lượt tại E, K, G.
a) Chứng minh: 1/AE=1/AG+1/AK.
b) Khi GC:GD=1:2 hãy tính tỉ số diện tích của tam giác CKG và diện tích hình bình hành ABCD
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho hình bình hành ABCD (góc A lớn hơn 90 độ). Phân giác góc A cắt BD tại M, phân giác góc D cắt AC tại N. CHứng minh:
a) MN song song với AD
b) \(S_{\Delta OMN}.S_{\Delta OAD}=S^2_{\Delta AMO}\)
cho tam giác ABC có E,F,M lần lượt là trung điểm AB,AC,BC I là điểm đối xứng M qua E,K đối xứng M qua F a) chứng minh AEMF là hình bình hành b) ABC có thêm điều kiện gì để AEMF là hình chữ nhật c)chứng minh AMCK là hình bình hành d)tam giác ABC có thêm điều kiện gì để AMCK là hình chữ nhật e)chứng minh EK = BI f)chứng minh A là trung điểm IK
Cho hình bình hành ABCD (\(\widehat{A}>90\)). Vẽ ra ngoài hình bình hành các tam giác đều ADE và ABF. C/minh tam giác CEF là tam giác đều
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi