a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)
b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)
a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)
b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
Cho hình bình hành ABCD có tâm 0. Xác định các véc-tơ sau đây:
a) OÅ + OB+ OČ+OD.
c) AČ + BD+ BẦ + DÅ.
b) OẢ+ BỎ+CỔ+ DỒ.
d) OÀ + CB + OC +AĎ.
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Cho 2 hình bình hành hình ABCD (tâm O) và ABEF và EH = FG = AD . Chứng minh
1.
DA - DB + DC = 0
2.
MA + MC = MB + MD (M là điểm tùy ý)
3.
OA + OB + OC + OD = AB + DA + CD + BC
4. Tứ giác CDGH là bình hành
Cho hình bình hành abcd .Tính vecto bc - vecto ab
Cho hình chữ nhật ABCD có tâm O. Biết 5 , 12 . AB a AD a a. Chứng minh rằng: AC AB OC OD b. Chứng minh rằng: AB AD BC CD
cho hình bình hành ABCD tâm O. CMR:
a) \(\overrightarrow{CO}\) - \(\overrightarrow{OB}\) = \(\overrightarrow{BA}\)
b)\(\overrightarrow{AB}\) - \(\overrightarrow{BC}\) = \(\overrightarrow{DB}\)
c)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) = \(\overrightarrow{OD}\) - \(\overrightarrow{OC}\)
d)\(\overrightarrow{DA}\) - \(\overrightarrow{DB}\) + \(\overrightarrow{DC}\) = \(\overrightarrow{0}\)
Cho hình thang ABCD có AB song song CD cho AB=2a CD= a.O là trung điểm của AD tính độ dài vecto OB + vecto OC
cho hình bình hành ABCD có AB=AD=a , góc BAD =60độ .o là tâm .tính mô đun\(\overrightarrow{AB+AD}\) \(\overrightarrow{BA-BC}\) \(\overrightarrow{OB-DC}\) mọi người giúp em với ạ.em cầm gấp lắm