Bài 4.Cho hình bình hành ABCD , O là giao điểm hai đường chéo. Lấy E thuộc AB, F là giao điểm của EO và CD.
1)Chứng minh tứgiác AECF là hình bình hành
2) Kẻ FH//AC ( H thuộc AD), FG//BD ( G thuộc BC).Chứng minh H đối xứng với G qua Ovà tứgiác EHFG là hình bình hành
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt hai cạnh đối AD, BC ở E và F. Chứng minh rằng các điểm E và F đối xứng với nhau qua điểm O
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O ?
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, AC ở E và F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G và H.
Chứng minh rằng EGFH là hình bình hành ?
Cho hình 15 trong đó ABCD là hình bình hành.
Chứng minh rằng các điểm H và K đối xứng với nhau qua điểm O ?
Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, gọi F là điểm đối xứng với D qua C. Chứng minh rằng điểm E đối xứng với F qua điểm B ?
Bài 1.Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua A, F là điểm đối xứng với D qua C. Chứng minh:
a) AC P EF. b) Điểm E đối xứng với điểm F qua điểm B
Cho hình bình hành ABCD lấy M sao cho B là trung điểm của AM , lấy điểm N sao cho D là trung điểm của AN . Chứng minh a) M và N đối xứng với nhau qua C b) Ba đường thẳng AB,BN,DM đồng quy c) Gọi BN cắt CD ở O,AO cắt CN ở I.Chứng minh NI=2/3NC
Cho hình chữ nhật ABCD hai đường chéo AC và BD cắt nhau tại O. Tìm điểm đối xứng với A, D qua điểm O lần lượt là:
A. Điểm D, B
B.Điểm A, B
C. Điểm C, B
D. Điểm C, D