Cho hình bình hành ABCD có góc B là góc tù. Kẻ AH vuông góc với BD tại I, HK vuông góc với CD tại K. Gọi M là trung điểm của DK và N là trung điểm của BH. (cho biết S là diện tích) 1/ Chứng minh: tam giác ABN đồng dạng với tam giác HDM 2/ Kẻ NO vuông góc với AB tại O, Chứng minh: 3 điểm O, H, M thẳng hàng 3/ AN cắt BC tại E và cắt CD tại F. Trong trường hợp diện tích tam giác AHD/diện tích tam giác CEF=15/16. Tính tỷ số diện tích tam giác AHF/diện tích tam giác BNE. Giúp mình ý số 3 với ạ
1: Xet ΔABH và ΔHDK có
góc ABH=góc HDK
góc AHB=góc HKD
=>ΔABH đồng dạng với ΔHDK
=>AB/HD=BH/DK=BN/DM
Xet ΔABN và ΔHDM có
góc ABN=góc HDM
AB/HD=BN/DM
=>ΔABN đồng dạng vơi ΔHDM
b: ΔOBN đồng dạng với ΔKDH
=>OB/KD=BN/DH
=>OB/BN=KD/DH
=>OB/2BN=DM/DH
=>OB/BH=DM/DH
Xét ΔOBH và ΔMDH có
góc OBH=góc MDH
OB/BH=MD/DH
=>ΔOBH đồng dạng với ΔMDH
=>góc OHB=góc DHM
=>O,H,M thẳng hàng