giải và biện luận hệ : \(\begin{cases}\left(x^2+y^2\right)^2-4a^2\left(x^2-y^2\right)=0\\xy=a^2\end{cases}\)
với a là tham số và a khác 0
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)
giải hpt:1)\(\begin{cases}\text{x+y+xy(2x+y)=5xy }\\\text{x+y+xy(3x-y)=4xy}\end{cases}\)
2)\(\begin{cases}\left(2x+y+1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{cases}\)
3)\(\begin{cases}\sqrt{9x+\frac{y}{x}}+2.\sqrt{y+\frac{2x}{y}}=4\\\left(\frac{2x}{y^2}-1\right)\left(\frac{y}{x^2}-9\right)=18\end{cases}\)
Giải hpt
1. \(\begin{cases}3\left(x\sqrt{x}-y\sqrt{y}\right)=6\left(4\sqrt{2}+\sqrt{y}\right)\\x-3y=6\end{cases}\)
2.\(\begin{cases}x^2+y^2-xy=1\\\sqrt{\left(x+y\right)^2}=x^2+y^2\end{cases}\)
Giải hệ pt:
\(\begin{cases}x^3-\left(y^2+y\right)^3=y^3\left(\sqrt{y+1}-\sqrt{\frac{x}{y}}\right)\\2x^3-12y^3=xy^2\left(1+y\right)\end{cases}\)
1)\(\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\3\sqrt{y-1}+\sqrt{x}=2\sqrt{y+1}\left(2\right)\end{cases}\) nhân liên hợp pt 1 đc (\(\left(x^2-y^2+1\right)\left(\frac{1}{x+\sqrt{y^2-1}}+\frac{1}{\sqrt{x^2+1}+y}\right)\) thì TH1 \(x^2-y^2+1\) lm ntn
2\(\begin{cases}\sqrt{x^2+xy+2y^2}+\sqrt{xy}=3y\\\sqrt{y-1}+\sqrt{x-1}+x+y=6\end{cases}\)
3\(\begin{cases}\frac{\sqrt{x^2+5}}{x}+\frac{\sqrt{y^2+3}}{y}=\frac{7}{2}\\x\sqrt{x^2+5}+y\sqrt{y^2+3}=3+x^2+y^2\end{cases}\)
Giải hệ phương trình sau :
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\end{cases}\) \(\left(x,y\in Z\right)\)
Mn giúp e với ạ lm đc con nào thì làm ạ e cần gấp :((
\(1.\begin{cases}x^4+4x^3+y^2=8\\-4x^3+2x^2+xy\left(y-2\right)=-4\end{cases}\) 5.\(\begin{cases}xy^3+y^3+xy+y=1\\4x^2y^3-4y^3-8xy-17+8=0\end{cases}\)
\(2.\begin{cases}2x^2y^2+x^2+2x=2\\2x^2y-x^2y^2+2xy=1\end{cases}\) 6.\(\begin{cases}2x+\frac{5y}{x^2+y^2}=4\\2y+\frac{5x}{x^2+y^2}=5\end{cases}\)3.\(\begin{cases}x^2+4y=3\\\left(2y^2+1\right)x=y^4+y^2-4y+1\end{cases}\)
4.\(\begin{cases}x^3+y^3-x^2y-xy^2-xy=0\\y^2-3x^2+3xy+3x-y-1=0\end{cases}\)
Giải hpt
\(\begin{cases}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{cases}\)