Cho hệ phương trình:\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a)Giải hệ phương trình khi m=\(\sqrt{2}\)
b)Giải và biện luận hệ theo m
c)Xác định các giá trị nguyên của m để hệ có nghiệm duy nhất (x,y) sao cho x>0,y>0
d)Với các giá trị nguyên nào của m thì hệ có nghiệm (x,y) là các số nguyên dương
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
Bài 8: Cho (P): \(y=-\dfrac{x^2}{4}\) và điểm M (1;-2)
1. Viết Phương trình đường thẳng (d) đi qua M và có hệ số góc là m 2. Chứng minh: (d) luôn cắt (P) tại hai điểm phân biệt A và B khi m thay đổi
3. Gọi xA, yA lần lượt là hoành độ của A và B. Xác định m để \(\left(x_A\right)^2x_B+\left(x_B\right)^2x_A\) đạt giá trị nhỏ nhất và tính giá trị đó?
Câu 1: cho hàm số y = x2 ( P )
a/ tính giá trị của m để đường thẳng y = mx - 4 tiếp xúc với ( P ).
Câu 2: cho hệ phương trình x2+ 3x + m = 0 (1)
a/ với giá trị nào của thì phương trình ( 1 ) có nghiệm?, vô ngiệm?
b/ khi phương trình 1 có nghiệm hãy x1; x2 hãy tính \(\sqrt{\text{x_1^2+ x_2}^2}\)
Câu 3: cho pt x2 + mx - 3 =0 ( 1 )
a/ chứng minh phương trình 1 luôn có hai ngiệm x1 ; x2.
Trong mặt phẳng tọa oxy cho parabol (P) y= -x2 và đường thẳng (d) y= mx +2 ( m là tham số ) a) Tìm m để (d) cắt (P) tại 1 điểm duy nhất
b) Cho 2 điểm A(-2;m) và B(1;n) . Tìm m,m để A thuộc (P) , B thuộc (d)
c) Gọi H là chân đường vuông góc kẻ từ O đến (d) . Tìm m để độ dài đoạn OH lớn nhất
Bài 5: Cho hàm số (P): \(y=x^2\) và hàm số(d): y = x + m
1. Tìm m sao cho (P) và (d) cắt nhau tại hai điểm phân biệt A và B
2. Xác định Phương trình đường thẳng (d’) vuông góc với (d) và tiếp xúc với (P)
3. Tìm m sao cho khoảng cách giữa hai điểm A và B bằng \(3\sqrt{2}\)
1 vẽ đồ thị hàm số y= x²/2 (P) 2 bằng phép tính hãy xác định toạ độ các giáo điểm parabol (P) với đưownhf thẳng (d) có phương trình y=-1/2 x+1 3 với các giá trị nào của m thì đường thẳng (d) y=X+m a cắt parabol (P) b tiếp xúc với parabol c không cắt parabol
Trên mặt phẳng Oxy , cho (P) : y= \(\dfrac{1}{2}\) x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
Cho parabol (P): y= (m-1)\(x^2\) và đường thẳng (d):y=2x-1
Tìm m để (P) đi qua điểm A(\(-\sqrt{3}\);-3).Vẽ P với m tìm được trên hệ trục toạn độ Oxy