- Nếu \(m=0\Rightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\) \(\Rightarrow x+y=1\) (ko thỏa)
- Nếu \(m\ne0\): \(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m\\x+my=3\end{matrix}\right.\)
\(\Rightarrow\left(m^2+1\right)x=2m+3\Rightarrow x=\dfrac{2m+3}{m^2+1}\)
\(\Rightarrow y=mx-2=\dfrac{m\left(2m+3\right)}{m^2+1}-2=\dfrac{3m-2}{m^2+1}\)
\(\Rightarrow x+y=0\Leftrightarrow\dfrac{2m+3}{m^2+1}+\dfrac{3m-2}{m^2+1}=0\)
\(\Leftrightarrow\dfrac{5m+1}{m^2+1}=0\Leftrightarrow5m+1=0\Rightarrow m=\dfrac{-1}{5}\)