Với a=2, HPT đã cho (KH: (I)) trở thành:
\(\left\{{}\begin{matrix}3x-y=3\\x+2y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3x-3\\x+2\left(3x-3\right)=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3x-3\\7x=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3.8}{7}-3\\x=\dfrac{8}{7}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)
b, (Mình giải bằng định thức, nếu không hiểu bạn có thể search Google nha bạn)
Ta có:
\(D=\left|\begin{matrix}a+1&-1\\1&a-1\end{matrix}\right|=\left(a+1\right)\left(a-1\right)-1\cdot\left(-1\right)=a^2-1+1=a^2\)
\(D_1=\left|\begin{matrix}a+1&-1\\2&a-1\end{matrix}\right|=\left(a+1\right)\left(a-1\right)-2\cdot\left(-1\right)=a^2-1+2=a^2+1\)\(D_2=\left|\begin{matrix}a+1&a+1\\1&2\end{matrix}\right|=2\left(a+1\right)-\left(a+1\right)=a+1\)
Do đó, ta có:
\(\left\{{}\begin{matrix}Dx=D_1\\Dy=D_2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a^2x=a^2+1\\a^2x=a-1\end{matrix}\right.\)
Ta có:
Với \(a\ne0\), PT luôn có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\dfrac{a^2+1}{a^2}\\y=\dfrac{a+1}{a^2}\end{matrix}\right.\)
Với \(a=0\), ta có:
\(\left\{{}\begin{matrix}0x=1\\0y=1\end{matrix}\right.\) (vô lý!)
Vậy PT có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{a^2+1}{a^2}\\y=\dfrac{a+1}{a^2}\end{matrix}\right.\) khi và chỉ khi \(a\ne0\)
c, (mình chịu :>)
Chúc bạn học tốt nha
.